This post comes mostly from the youtube video by BlackPenRedPen found here: https://www.youtube.com/watch?v=89d5f8WUf1Y&t=3s

This in turn comes from Brilliant.com – details and links can be found in the original video

In this post we will have a look at a complicated-looking limit that has an interesting solution. Here it is: $\lim_{n \rightarrow \infty} ( \frac{n!}{n^n})^{\frac{1}{n}}$

This looks pretty daunting – but we will break the solution down into sections:

• taking the logarithms and rearranging
• recognising something familiar
• finding the numerical value

Step 1: Taking the Logarithm

The first step here is to take the logarithm, a generally useful trick when applying limits. First we assign the variable L to the limit (so that we can solve for it in the end). Now lets do some algebra: $L = \lim_{n \rightarrow \infty} ( \frac{n!}{n^n})^{\frac{1}{n}}$ $\ln(L) = \ln(\lim_{n \rightarrow \infty} ( \frac{n!}{n^n})^{\frac{1}{n}})$

Noting that the natural logarithm $\ln$ is a continuous function and therefore we can take the limit outside of the function: $\ln(L) = \lim_{n \rightarrow \infty} \ln( (\frac{n!}{n^n})^{\frac{1}{n}})$

Next we can use the logarithm laws to bring down the exponent: $\ln(L) = \lim_{n \rightarrow \infty} \frac{1}{n} \ln(\frac{n!}{n^n})$

Alright, now we have taken the logarithm, step 1 is complete.

Step 2: Rearranging the expression and recognising the form of the integral

Now we turn our attention to the expression $\frac{n!}{n^n}$. Breaking this down a bit more we can get closer to solving this. We know that $n! = n*(n-1)*(n-2) \dots 1$ and that $n^n = n*n*n \dots n$.

So we can rewrite: $\ln(\frac{n!}{n^n}) = \ln(\frac{n}{n} . \frac{n-1}{n} . \frac{n-2}{n}\dots \frac{1}{n})$

Then using log laws and changing the order we have: $\ln(\frac{n!}{n^n}) = \ln(\frac{1}{n}) +\ln(\frac{2}{n}) + \ln(\frac{3}{n}) +\dots + \ln(\frac{n-2}{n}) + \ln(\frac{n-1}{n}) +\ln(\frac{n}{n})$

Next we put this back into our full expression to get: $\ln(L) = \lim_{n \rightarrow \infty} \frac{1}{n} (\ln(\frac{1}{n}) +\ln(\frac{2}{n}) + \ln(\frac{3}{n}) +\dots + \ln(\frac{n-2}{n}) + \ln(\frac{n-1}{n}) +\ln(\frac{n}{n}))$ $\ln(L) = \lim_{n \rightarrow \infty} \frac{1}{n}\sum_i^n \ln(\frac{1}{n})$

But this looks a lot like the definition of the Riemann integral: $\lim_{n \rightarrow \infty} \frac{1}{n} \sum_i^n f(x_i)$

where we have split the interval $[0,1]$ into increments, $x_i = \frac{i}{n}$ and $f(x) = \ln(x)$.

So we can therefore rewrite our expression above as: $\ln(L) = \int_0^1 \ln(x) dx$

Now all that we need to do is find the value of the integral

Step 3: Evaluating the integral and solving for L

The last thing we need to do is solve this integral – we will do this by parts.

The 2 functions $f,g$ and their derivatives ( $f',g'$) are as follows: $f = ln(x), g = x, f' = \frac{1}{x}, g' = 1$

which gives us: $x\ln(x)|^1_0 - \int_0^1 x \frac{1}{x} dx$

Looking at the first term we have: $1.\ln(1) - \lim_{x \rightarrow 0^+} x.ln(x)$ $= 0 - \lim_{x \rightarrow 0^+} x.ln(x)$

Now to handle this limit, which is in the indeterminate form – as usual we will rewrite it and then use L’Hospital’s rule to evaluate it: $\lim_{x \rightarrow 0^+} x.ln(x) = 0 \times -\infty$ $\lim_{x \rightarrow 0^+} x.ln(x) = \lim_{x \rightarrow 0^+} \frac{ln(x)}{\frac{1}{x}} = \frac{-\infty}{\infty}$

Using L’Hospital’s rule and differentiating the numerator and the denominator and taking their respective limits we get: $\lim_{x \rightarrow 0^+} x.ln(x) = \lim_{x \rightarrow 0^+} \frac{ln(x)}{\frac{1}{x}} = \lim_{x \rightarrow 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \rightarrow 0^+} -x = 0$

This gives us the first term as 0.

Clearly the second term, $-\int_0^1 x \frac{1}{x} dx =-\int_0^1 1 dx = -x|^1_0 = -(1-0)$,

is   -1.

Therefore our integral evaluates to -1.

Now all that remains is to rearrange our equation and solve for $L$ $\ln(L) = \int_0^1 \ln(x) dx = -1$ $\ln(L) = -1$ $L = e^{-1}$

and that’s it, we are done: $\lim_{n \rightarrow \infty} ( \frac{n!}{n^n})^{\frac{1}{n}} = e^{-1}$

 How clear is this post?