Complexity from complex numbers – The beauty of the Mandelbrot set
We are about to show that you can get incredible structure from the simplest of algorithms when we use complex numbers.
The equation we are going to look at is an iterative equation:
with . You simply get the next
from plugging in the previous one, squaring it and adding a number
. I’m going to give you a value for
, then you’re going to iterate this equation and see what happens. For instance, if I give you the number
:
You can see that this number is just going to keep on increasing without end if we keep applying the algorithm. How about a smaller number, let’s say :
It looks like this is tending to some value. In fact it has come to a fixed point where . There are actually two solutions to this equation but one of them is 0.112702 which is where we are tending towards.…