About Jonathan Shock

I'm a lecturer at the University of Cape Town in the department of Mathematics and Applied Mathematics. I teach mathematics both at undergraduate and at honours levels and my research interests lie in the intersection of applied mathematics and many other areas of science, from biology and neuroscience to fundamental particle physics and psychology.

On useful study habits

I’ve been teaching MAM1000W for around 9 years now, and I am learning all the time. I learn both about new ways to think about old subjects (and how to try and best explain them), and I learn about the way students study, about what works and what doesn’t, and what are some of the habits of students who succeed. Not all of these ideas will be perfect for everyone, but I hope that they will help.

Passive versus active learning

Trying to teach as clearly as possible is a double-edged sword. Of course I want students to come away feeling like they have understood the subject, but if they come away with too much confidence, then they won’t do the one thing which they have to do to actually understand it…and that is practice, but practice of a very particular kind. There is a balance that we should all be thinking about when trying to improve on something (be it sports, music, languages, or maths), and that is finding the right questions to practice on which are hard enough to make us have to sweat a little, but not so hard so as to make us give up completely.…

By | May 13th, 2022|Courses, First year, MAM1000, Undergraduate|2 Comments

In pursuit of Zeta-3 – The World’s Most Mysterious Unsolved Math Problem, by Paul Nahin – a review

NB. I was sent this book as a review copy.

I have to admit that I felt very skeptical when I started reading this book. In the prologue it is stated that the book is aimed at enthusiastic readers of mathematics with an AP level of high school maths. Then, diving into the book one sees what looks at first sight like a pure maths textbook at graduate level. But Paul Nahin isn’t one to pull a fast one like that, so I read further. In fact, I raced through it, hugely enjoyed it, and in the end agree with Nahin that someone with a US AP level of high school maths, or here in South Africa a confident first year undergraduate could actually understand everything in the book.

The book is not written as a textbook on mathematics, much as it might look like one, but rather it is taking an historical path through the investigations into the mysteries of zeta(3).…

By | April 23rd, 2022|Book reviews, Reviews|1 Comment

When least is best, by Paul Nahin – a review

NB. I was sent this book as a review copy.

For my review of Nahin’s superb book “How to fall slower than gravity”, see here.

While not often taught as a topic with such wide-ranging uses in maths classes, finding the maxima or minima of functions is one of the most important areas in all of applied mathematics. I say this as a practitioner of machine learning, where most of what we do is trying to find the minimum of a loss function, and as a physicist where in quantum field theory, the dynamical equations come from trying to extremise an action. While these areas aren’t discussed in the book (the closest it gets is looking at the classical Euler-Lagrange problem), to get students to think about how useful it is to find the maxima and minima of a function is really a powerful thing.

Nahin takes on this challenge and succeeds in the same way that he succeeded in making the problems in the previous book of his that I reviewed both fascinating and easy to follow.…

By | April 23rd, 2022|Book reviews, Reviews|0 Comments

A course in Complex Analysis, by Saeed Zakeri – a review

NB. I was sent this book as a review copy.

This is a no-nonsense, clearly written graduate level textbook on complex analysis, and while it is written for a graduate audience, I think that the way it is laid out, with clear examples throughout, a keen undergraduate with a background in analysis and topology. As such it is far more approachable than many other books on complex analysis and I would say that it would be perfectly suited for physics students wanting to go into areas like quantum field theory, particularly string theorists where the sections on conformal metrics and the modular group would be very helpful.

One thing to look out for in a book like this is the clarity of the proofs, and the number of intermediate lines which are included, and in this case I think that there is just the right amount to make everything easy to follow, but not overwhelming the material.…

By | April 23rd, 2022|Book reviews, Reviews|0 Comments

Visual Differential Geometry and Forms – a mathematical drama in five acts, by Tristan Needham – a review

NB. I was sent this book as a review copy.

Studying physics, some two decades ago at The University of Bristol, I found the majority of what we covered relatively intuitive. Even the arcane world of quantum mechanics, while impossible to truly visualise, is, paradoxically, often relatively simple to calculate, and the objects that you use are directly from the world of complex numbers, differential equations and linear algebra. What stumped me however were tensors. I found it so hard to really picture what was going on with these objects. Vectors were ok, and the metric tensor I could handle, but as soon as you got onto differential forms, all my intuition went out the window. The world of differential geometry, while I could plug and chug, felt like putting together sentences in a foreign language where all I had were rules for using the syntax and grammar, without a deep understanding of what the objects were

This book would have answered all of my prayers back then.…

By | December 11th, 2021|Book reviews, Reviews|0 Comments

Curves for the Mathematically Curious – an anthology of the unpredictable, historical, beautiful and romantic, by Julian Havil – a review

NB I was sent this book as a review copy.

What a beautiful idea. What a beautiful book! In studying mathematics, one comes across various different curves while studying calculus, or number theory, or geometry in various forms and they are asides of the particular subject. The idea however of flipping the script and looking at curves themselves and from them gaining insight into: statistics, combinatorics, number theory, analysis, cryptography, fractals, Fourier series, axiomatic set theory and so much more is just wonderful.

This book looks at ten carefully chosen curves and from them shows how much insight one can get into vast swathes of mathematics and mathematical history. The curves chosen are:

  1. The Euler Spiral – an elegant spiral which leads to many other interesting parametrically defined curves
  2. The Weierstrass Curve – an everywhere continuous but nowhere differentiable function
  3. Bezier Curves – which show up in computer graphics and beyond
  4. The Rectangular Hyperbola – which leads to the investigation of logarithms and exponentials
  5. The Quadratrix of Hippies – which are tightly linked to the impossible problems of antiquity
  6. Peano’s Function and Hilbert’s Curve – space filling curves which lead to a completely flipped understanding of the possibilities of infinitely thin lines
  7. Curves of Constant Width – curves which can perfectly fit down a hallway as they rotate.
By | March 15th, 2020|Book reviews, Reviews, Uncategorized|0 Comments

Tales of Impossibility – The 2000 year quest to solve the mathematical problems of antiquity, by David S. Richeson – a review

NB I was sent this book as a review copy.

Four impossible puzzles, all described in detail during the height of classical Greek Mathematics. All simple to define and yet so tempting that it has taken not only the brain power of many, many thousands of mathematicians (amateur and professional alike), but also two millennia to show that however hard you may try, these puzzles are just not possible. The puzzles are:

  • Squaring the circle: With only a compass and a straight edge, draw a square with the same area as that of a given circle.
  • Doubling the cube: With only a compass and a straight edge, draw the edge of a cube with volume twice that of a cube whose edge is given.
  • Constructing regular polygons: Given a compass and a straight edge, construct a regular n-gon in a given circle for n\ge 3.
  • Trisecting an angle: Given a compass and a straight edge, and a given angle, construct an angle that is one third of the original.
By | February 9th, 2020|Uncategorized|1 Comment

What’s the shortest known Normal Number?

Well, the answer is that it has to be infinitely long, but the question is what is the most compact form of a Normal Number possible.

I was motivated to look into this from a lovely Numberphile video about all the real numbers.

 

Normal numbers in base 10 are those for which, in the base 10 decimal expansion, you can find every natural number.

Champernowne’s number is a very simple example of this where it is simply written as:

0.12345678910111213…etc.

I thought that it might be interesting to see if one could write a more compact Normal Number, but using a similar procedure to Champernowne. I haven’t seen this done anywhere else. For example, in the above expression, you don’t need to include the 12 explicitly as it’s already there at the beginning. You could write

0.12345678910113

So you skip the 12, and also 11 and 13 becomes 113. We will do all of this just with the list of digits, rather than the number in base 10.…

By | September 6th, 2019|Uncategorized|0 Comments

On the invariant measure in special relativity

I’m writing this for my string theory class. We are basing our lectures on Zwiebach – A First Course in String Theory, and starting off with special relativity. Not everybody in the class has a physics background (pure and applied mathematics students), and so there are likely to be questions which come up which show where I have to fill in some knowledge. We had a question about the invariant measure in special relativity (SR) and why there was a different sign in front of the time term compared with the space terms. I’ll do my best to explain here. Note that I am not explaining it in the precise chronological order of discoveries.

We start the picture off with relativity before SR – that is, Galilean Relativity. This simply states that the laws of motion are the same in all inertial (non-accelerating frames). That may sound straightaway like SR, but there’s a crucial ingredient missing which we will see in a bit.…

By | July 23rd, 2019|Uncategorized|0 Comments

MAM1019H fundamentals of mathematics

How clear is this post?
By | July 18th, 2019|MAM1019H|3 Comments