1.1 Relations: Introduction

What are relations?

In every day life, a person is related to their parents, siblings, cousins, teachers, friends, etc. in some way. Similarly in mathematics, mathematical objects like numbers and sets are related to one another in some way. Many relations (symbols) will be familiar already:

1. $2 <3$
2. $\pi \approx 3.14$
3. $5 \in \mathbb{Z}$
4. $X \subset Y$
5. $a \equiv b(modn)$

Consider the following set $A = \{1, 34, 56, 78 \}.$ We can compare the numbers in A using the symbol “<” as follows: $1 < 56, 34 < 78$ etc. We can write this as a set in the following way: $R = \{ (1,34), (1,56), (1,78), (34,56), (34,78), (56,78) \}.$

Each pair in this new set R expresses the relationship x < y (where x and y are numbers from A).

In other words, $1<34, 1<56, 1<78, ...$ So if asked whether $34 < 78$ is true,  one only needs to look into our set R to find the pair $(34,78).$ If we didn’t find it, then the relation would be considered false for the given set. The above example is intuitive because we are already comfortable with the relation <. In more abstract cases, thinking of the relationship between mathematical objects in this way may be a little trickier!…

The definite integral

I realise now, in all the excitement of the FTC that I hadn’t written a post about the definite integral…that’s shocking! ok, here we go…the plan for this post:

• Look at our Riemann sums and think about taking a limit of them
• Define the definite integral
• Look at a couple of theorems about the definite integral
• Do an example
• Look at properties of definite integrals

That’s quite a lot, but we are more or less going to follow along with Stewart. Stewart just has a slightly different style to mine, so I recommend reading his for more detail, and mine for potentially a bit more intuition.

So, let’s begin…

We have seen in previous lectures/sections/semesters/lives that we can approximate the area under a curve by splitting it up into rectangular regions. Here are examples of splitting up one function into rectangles (and, in the last way trapezoids, but you don’t have to worry about this).…

The Fundamental Theory of Calculus part 2 (part i)

OK, now we come onto the part of the FTC that you are going to use most. We are finally going to show the direct link between the definite integral and the antiderivative. I know that you’ve been holding your breaths until this moment. Get ready to breath a sign of relief:

The Fundamental Theorem of Calculus, Part 2 (also known as the Evaluation Theorem)

If $f$ is continuous on $[a,b]$ then

$\int_a^b f(x) dx=F(b)-F(a)$

where $F$ is any antiderivative of $f$. Ie any function such that $F'=f$.

————-

This means that, very excitingly, now to calculate the area under the curve of a continuous function we no longer have to do any ghastly Riemann sums. We just have to find an antiderivative!

OK, let’s prove this one straight away.

We’ll define:

$g(x)=\int_a^x f(t)dt$

and we know from the FTC part 1 how to take derivatives of this. It’s just $g'(x)=f(x)$. This says that $g$ is an antiderivative of $f$.…

The Fundamental Theorem of Calculus part 1 (part iii)

So, we are now ready to prove the FTC part 1. We’re going to follow the proof in Stewart and add in some discussion as we go along to motivate what we are doing. What we are going to prove is that:

$\frac{d}{dx} \int_a^x f(t) dt=f(x)$

for $x\in [a,b]$ when $f$ is continuous on $[a,b]$.

Proof:

we define $g(x)=\int_a^x f(t)dt$ and we want to find the derivative of $g$. We will do this by using the fundamental definition of the derivative, so let’s look at calculating this function at $x$ and $x+h$ – ie. how much does it change when we change $x$ by a little bit?

$g(x+h)-g(x)=\int_a^{x+h}f(t) dt-\int_a^x f(t) dt$

But remember that the definite integral is just the area, so this difference is the area between a and x+h minus the area between a and x. Which is just the area between x and x+h. Using the properties of integrals, we can write this formally as:

$g(x+h)-g(x)=\int_a^{x+h}f(t) dt-\int_a^x f(t) dt=\left(\int_a^{x}f(t)+\int_x^{x+h}f(t)\right)-\int_a^{x}f(t)=\int_x^{x+h}f(t)dt$

and we can write, for $h\ne 0$:

$\frac{g(x+h)-g(x)}{h}=\frac{1}{h}\int_x^{x+h}f(t)dt$

Restated, we can think of this as the area between x and x+h divided by h.…

The Fundamental Theorem of Calculus part 1 (part ii)

OK, so up to now we can’t actually use the FTC (Fundamental Theorem of Calculus) to calculate any areas. That will come from the FTC part 2.

For now, let’s take some examples and see what the FTC is saying. I’ll restate it here:

The Fundamental Theorem of Calculus, part 1

If $f$ is continuous on $[a,b]$ then the function $g$ defined by:

$g(x)=\int_a^x f(t) dt$,     for $a\le x\le b$

is continuous on $[a,b]$ and differentiable on $(a,b)$, and $g'(x)=f(x)$.

——

Let’s look at some examples. We’re going to take an example that we can calculate using a Riemann sum. Let’s choose $f(x)=x^2$.

If we integrate this from $0$ to some point $x$ – ie. calculate the area under the curve, we get:

$\int_0^x t^2 dt=\frac{x^3}{3}$.

Make sure that you can indeed get this by calculating the Riemann sum.

So, what does the FTC part 1 tell us? It says that if we take the derivative of this area, with respect to the upper limit, $x$, then we get back $f(x)$.…

The Fundamental Theorem of Calculus, part 1 (part i)

We’ve seen some intriguing things in this course so far, and we’ve developed some clever tricks, from how to find the gradient of just about any function we can throw at you, to proving statements to be true for an infinite number of cases.

To some extent, this is what we have looked at so far (at least in terms of calculus, and building up to calculus):

However, we’re about to see some magic. We’re about to see the most important thing yet on this course, and indeed one of the most important moments in all of mathematical history.

We are going to see…actually, we are going to prove, that there is a relationship between rates of change and the area under a graph. This doesn’t sound that amazing, but its consequences have essentially allowed for the development of much of modern mathematics over the last 350 years.

The link that we are going to prove will allow us to find the area under graphs of functions for which taking the Riemann sum would be really hard.…

From Novice to AI with Wolfram Language

I have been publishing a series of Wolfram language lectures for some time now on this platform, I think we have about 6 lessons so far. I had written a full Wolfram Notebook for a course on Wolfram language programming and Artificial Intelligence I first taught at Kaduna State University Nigeria and decided to share them here.

The course is fast paced and takes you from Novice to AI practitioner in the shortest time possible. I taught this course over a period of 3 days so it is really fast paced. Enjoy!

Follow the link to see the lecture with Wolfram Notebook From Novice to AI

 How clear is this post?

Deborah Kent (Drake University) Omar Khayyam’s Geometrical Solution of the Cubic: An Example of Using History in the Teaching of Mathematics

Second talk at the Diversifying the curriculum conference in Oxford.

The following was taken down live, and as such there may be mistakes and misquotes. It is mostly a way for me to keep notes and to share useful resources and thoughts with others. As such, nothing should be used to quote the speaker from this article

From https://www.drake.edu/math/faculty/deborahkent/

How to generate interesting conversations with students surrounding mathematical diversity.

Historical figures (From wikipedia):

Omar Khayyam 18 May 1048 – 4 December 1131) was a Persian mathematician, astronomer, and poet. He was born in Nishapur, in northeastern Iran, and spent most of his life near the court of the Karakhanid and Seljuq rulers in the period which witnessed the First Crusade.

As a mathematician, he is most notable for his work on the classification and solution of cubic equations, where he provided geometric solutions by the intersection of conics.

Learn Wolfram Mathematica in the Cloud part 5

Let’s do some list FU, a kind of Kung Fu with Wolfram language lists

 How clear is this post?